LEENet: Learned Early Exit Network

Learning Optimal Early Exit Policy for Efficiency Improvements in DNNs

Austin Chemelli, Anthony Wong, Blake Sanie, Dylan Mace, Dylan Small, Nic Zacharis

Project Information

What is Early Exit?

- Place classifiers at **multiple** locations throughout the model
- At each potential exit, a **confidence value** dictates whether to use the exit
	- If threshold met, classify image

Our Approach

- Insert "gate layer" to decide whether to exit
- Learn gate layer parameters to optimize accuracy/cost tradeoff
- Insert hyperparameters for tuning tradeoff

System Architecture + Pretrained Components

Open Source Components Utilized

- Model Architectures:
	- ResNet50: [TorchVision](https://pytorch.org/vision/main/models/generated/torchvision.models.resnet50.html)
	- VGG11: [TorchVision](https://pytorch.org/vision/main/models/generated/torchvision.models.vgg11.html)
	- DenseNet121: [TorchVision](https://pytorch.org/vision/main/models/generated/torchvision.models.densenet121.html)
- Datasets
	- ImageNetTE: [HuggingFace](https://huggingface.co/datasets/frgfm/imagenette)
		- 12,000 320x320 images, 10 classes
	- CIFAR-10: [HuggingFace](https://huggingface.co/datasets/cifar10)
		- 6,000 32x32 images, 10 classes
	- CIFAR-100 [HuggingFace](https://huggingface.co/datasets/cifar100)
		- 60,000 32x32 images, 100 classes
- Previous Early Exit Implementation Code:
	- EENet: Learning to Early Exit for Adaptive Inference (Ilhan et al.)
		- Paper: **arXiv**
		- Code: [GitHub](https://github.com/git-disl/EENet)

System Architecture

- OptionalExitModule
	- Wrapper class for converting a pretrained layer into an exit layer
- EarlyExitModel
	- Wrapper class for converting a pretrained model into a LEENet model
- **EarlyExitTrainer**
	- All logic for training classifier heads and gate layers
- main.ipynb
	- Jupyter notebook for creating LEENet models / training exit classifiers
- alpha_tuning.ipynb
	- Jupyter notebook for training gate layers with varying alpha values
- exit_vis.ipynb
	- Jupyter notebook for calculating data metrics and generating test visualizations
- alpha_tuning_results.ipynb
	- Jupyter notebook for generating frontier curves for all trained model alpha values

Code Walkthrough - Model Wrapper

trv:

class EarlyExitModel(nn.Module):

def _init_(self, model, num_outputs, device):

def forward(self, X): batch_size, *sample_shape = X.shape if self.state $=$ TrainingState.INFER: if torch.cuda.is_available() and len(self.exit_modules) > 0: last layer y hat = None for stream in [module.stream for module in self.exit_modules if module.stream is not None]: stream.synchronize() # wait for all multithreaded classifiers to finish # y hat of layer where there are no remaining images to push forward in the model. All samples have exited early_exit_y_hat = None y_hat = torch.empty((batch_size, self.num_outputs), device=self.device) $last_{layer_yhat} = self.model(X)$ remaining_idx = torch.arange(batch_size, device=self.device) except EarlyExitException as e: early_exit_y_hat = $e.y_h$ _hat self.num exits per module = $[]$ if self.state = TrainingState.TRAIN CLASSIFIER EXIT or self.state = TrainingState.TRAIN CLASSIFIER FORWARD: for exit_module in self.exit_modules: if last laver y hat is not None: if len(remaining_idx) = 0 : # if forward pass made it to the back of the layer, get the last layer y_hat self.num_exits_per_module.append(0) return last layer y hat continue # if exit occured before last classifier, get v hat where exit occured self.num_exits_per_module.append(exit_module.exit_taken_idx.sum().item()) return early_exit_y_hat # use indices of exits taken in the model's (reduced) batched to obtain the translated original index within the original batch original_idx = remaining_idx[exit_module.exit_taken_idx] if self.state = TrainingState.TRAIN EXIT: if len(original idx) = 0 : continue assert last_layer_y_hat is not None, "Forward propagation should have made it to the end of the model" y_hat[original_idx] = exit_module.y_hat y_hats = torch.empty((batch_size, len(self.exit_modules) + 1, self.num_outputs), device=self.device) # mirroring how the batch is reduced by the exit module, reduce index look up array the same way exit confidences = torch.empty((batch size, len(self.exit modules)), device=self.device) remaining_idx = remaining_idx[~exit_module.exit_taken_idx] for i, exit_module in enumerate(self.exit_modules): # if even after going through each early exit layer, there are samples that did not exit, grab the y_hat from terminal classifier $y_hats[:, i] = exit_model.y_hat$ if len(remaining idx) > 0: $exit_{\text{confidences}}[:, i] = exit_{\text{module.exit_confidences}}$ y_hat[remaining_idx] = last_layer_y_hat self.num_exits_per_module.append(len(remaining_idx)) $y_hats[:, -1] = last_layer_y_hat$ else: self.num_exits_per_module.append(0) return y hats, exit confidences

return y_hat

Training Process

Training Process

- Train each early exit classifier
	- These can be trained individually since they are unrelated
	- **Loss: Categorical Cross Entropy**
	- **• Data Ratio:** 80/20 Train/Test
- Train final classification layer
	- This is just transfer learning onto your dataset
	- **• Loss:** Categorical Cross Entropy
	- **Data Ratio:** 80/20 Train/Test
- Train gate layers
	- These have to be trained at the same time
	- **Loss**: Custom Loss Function (next slides)
	- **Data Ratio:** 80/20 Train/Test

OptionalExitModule Forward Pass

- Input gets flattened
	- Output Size: (n,)
- Dot product with gate layer parameters
	- Output Size: (1,)
- Decide whether to exit
	- Gate layer output above threshold
- If exit, classify n input to logits
	- Output Size: (n_classes,)
- If not exit, feed through original network

class OptionalExitModule(nn.Module):

def init (self, module, num outputs):

Code Walkthrough - Early Exit Module

 $def forward(self, X):$

```
# Check the device of input tensor X and move necessary components to the same device
self.current_device = X.device
```

```
X_flat = torch.flatten(X, start_dim=1).to(self.current_device)
-, flat_size = X_flat.shape
```

```
# Create exit gate and classifier at runtime to adapt to module input size
if self.exit_gate is None:
    self.exit_gate = nn.Linear(flat_size, 1).to(self.current_device)
if self.classifier is None:
    self.classifier = nn.Linear(flat_size, self.num_outputs).to(self.current_device)
```

```
if self.state = TrainingState.TRAIN CLASSIFIER EXIT:
    return self.forward_train_classifier_exit(X, X_flat)
elif self.state = TrainingState.TRAIN_CLASSIFIER_FORWARD:
    return self.forward_train_classifier_forward(X, X_flat)
elif self.state = TrainingState.TRAIN_EXIT:
    return self.forward_train_exit(X, X_flat)
if self.state = TrainingState. INFER:
    return self.forward_infer(X, X_flat)
```


Code Walkthrough - Classifier Training

```
# MARK: - Training Classifiers
def train classifier epoch(self, train loader, epoch, validation loader=None):
    self_model.train()net loss = 0.0net_accuracy = 0.0validation loss = 0.0
```

```
validation accuracy = 0.0
```
self.progress_bar = tqdm(train loader, desc=f'Epoch {epoch}', ncols=100, leave=False)

```
for i, (X, y) in enumerate(self.progress_bar):
   X = X.to(self.device)y = y.to(self.device)y_hat = self.model(X)
```
trainable params = filter(lambda p: p.requires grad, self.model.parameters()) optimizer = torch.optim.Adam(trainable params, lr=0.0001)

```
optimizer.zero grad()
```
 $loss = self.classifier_loss function(y_hat, y)$ $accuracy = self.calculate_accuracy(y_hat, y)$

```
net_loss += loss.item()net_accuracy += accuracy
```
loss.backward() optimizer.step()

Update and display the progress bar at the end of each epoch self.progress_bar.set_postfix({"Loss": loss.item(), "Accuracy": accuracy})

Code Walkthrough - Gate Training

MARK: - Training Exits def train exit epoch(self, train loader, lr, epoch, validation loader=None): self.model.train()

net loss = 0.0 validation accuracy = 0.0 validation time = 0.0

self.progress_bar = tqdm(train_loader, desc=f'Epoch {epoch}', ncols=100, leave=False)

```
for i, (X, y) in enumerate(self.progress_bar):
   X = X.to(self.device)y = y.to(self.device)y hats, exit confidences = self.model(X)
```

```
trainable params = None
# concatenate all trainable parameters as gate layers
for exit_layer in self.model.exit_modules:
    if trainable_params is None:
        trainable_params = list(filter(lambda p: p.requires_grad, exit_layer.exit_gate.parameters()))
    else:
        trainable_params += list(filter(lambda p: p.requires_grad, exit_layer.exit_gate.parameters()))
```
optimizer = torch.optim.Adam(trainable params, $l r = l r$)

```
optimizer.zero_grad()
```
loss, ce part, cost part = self.gate loss function(y, y hats, exit confidences, self.model.costs)

```
net_loss += loss.item()
```
loss.backward() optimizer.step()

Update and display the progress bar at the end of each epoch self.progress_bar.set_postfix({"Loss": loss.item()})

```
# Optionally, calculate validation metrics
if validation loader is not None and i % (len(train loader) // 10) = 0:
    validation_accuracy, validation_time, exit_idx = self.validate_exit_gates(validation_loader)
```


Custom Gate Loss Function (Batch Size *n***)** $\label{eq:loss} \text{loss} = \frac{1-\alpha}{n} \left[\sum_{(X,y,\hat{y},g)} \left(\sum_{i=0}^{|g|} \left(\text{CE}(y,\hat{y}_i) \cdot g_i \prod_{j=0}^{i-1} \bar{g}_j \right) \right) \right] + \left[\sum_{(X,y,\hat{y},g)} \left(\sum_{i=0}^{|g|} \left(\text{costs}_i \cdot g_i \prod_{j=0}^{i-1} \bar{g}_j \right) + \text{costs}_{|g|} \prod_{j=0}^{|g|} \bar{g}_j \right) \right] \frac{\alpha}{n}$ Minimize CE Loss (Maximize Accuracy) Minimize Computational Cost (Maximize Efficiency) Control Weighting of Accuracy + Cost

Maximizing Accuracy

- Iterate over all images in the batch
- Calculate product summed over all gates:
	- Cross Entropy loss of:
		- **y** : true classification
		- \cdot $\hat{\mathbf{y}}_{i}$: predicted classification logits from gate i
	- Probability of exiting at gate i:
		- **• g**: exit confidence for gate i (larger means more confident)
		- \bar{g} : forward confidence for gate j (equal to 1-g_i)

Minimize this term for higher net model accuracy

Maximizing Efficiency

- Iterate over all images in the batch
- Calculate product summed over all gates:
	- Cost of exiting at gate i:

•

- Derived as **% parameters utilized after the first exit**
- Value ranges from **[0, 1]**
- Normalized so **c[0] = 0 and c[-1] = 1**
- Probability of exiting at gate i:
	- **• g**: exit confidence for gate i (larger means more confident)
	- \bar{g}_i : forward confidence for gate i (equal to 1-g_i)
- **• Minimize this term for lower net inference cost**

Controlling Accuracy/Cost Tradeoff $\log_{\pi} \left| \frac{1-\alpha}{n} \right| = \left| \frac{\alpha}{\alpha} \right|$

- Alpha weights both subequations of our loss function
	- \circ In the range $[0, 1]$
- Changing alpha allows for the loss function to tailor model behavior
	- **α = 0** : weight loss for accuracy only
	- **α = 1** : weight loss for computational efficiency only
	- **α > 0, α < 1** : weight both accuracy and computational cost
- **Optimal alpha depends** on the underlying dataset
	- Different datasets have varying tradeoffs between accuracy and efficiency
- Alpha increases the interpretability of our methodology
	- Single hyperparameter that easily allows for emphasizing model behaviors

Project Results (across varying alpha values)

Results (Frontier Curves for All Models)

1.47x DenseNet121/CIFAR-100 ResNet50/ImageNetTE VGG11/CIFAR-10

- In the above curves, we can see a general trend of **as accuracy increases, computational cost (time) also increases**.
	- Furthermore, we can observe that **alpha tends to decrease as accuracy and time increase**. This corresponds with with our loss function.
- Another interesting observation is the subtle difference in the accuracy vs time trend lines for each model.
	- DenseNet121 has more of a **linear** shape.
	- ResNet50 **slowly increases and then sharply increases** as alpha begins to decrease , it is also interesting to note most alpha values are clustered in the upper right quadrant of the graph.
	- VGG11 has a **somewhat linear shape**; however **once alpha is below 0.5**, most of the **accuracy stays about the same yet time increases**.

Results (DenseNet121/CIFAR-100, α=0.55)

Georgia
Tech

Results (ResNet50/ImageNetTE, α=0.75)

Results (VGG11/CIFAR-10, α=0.5)

Correct Examples: Wolf (VGG11/CIFAR100, α=0.6)

Exit 2 of 5

Consistent Face Scale and Position

Exit 3 of 5

Discoloration, scale and position variation

Incorrect Examples: Wolf (VGG11/CIFAR100, α=0.6)

Fox Seal Fox

Exit 2 of 5

Subject/background interference

Rabbit Flatfish Turtle

Exit 3 of 5

Misleading subject representation

DenseNet121/CIFAR-100 Sunflower Predictions (α=0.55)

Georgia

- 5.9% Incorrect

Next Steps

• Code cleaning + implementation improvements

- Parallel processing of classification heads
- **• Improve time savings**
	- Changing gate and classifier architectures
- **• Allow users to query for max inference budget**
	- Binary search alpha terms to find most accurate model meeting budget constraint
- Train on a large set of different datasets/ML models
	- AlexNet, MSDNet, LLMs(?),
- Continue to do comparison studies with previous work

Max Inference Budget Optimization (Coming Soon)

- Mirror approach by EENet (Ilhan et al.)
- Convert α to latent variable
- Treat time as the dominant hyperparameter
	- User requests a model that is faster than without Early Exit (ex: 2.0x, 1.5x,)
	- User requests a model that on average runs within time budget (ex: 5ms, 3ms, ...)
- Modified model training process
	- Perform binary search over α
	- Begin with $\alpha = 0.5$
	- If speedup is too low, increase alpha -- boosts efficiency, compromises accuracy
	- If speedup is too high, reduce alpha -- boosts accuracy, compromises efficiency

Gate Input Dimensionality Reduction (Coming Soon)

- Currently, exit gate infers over all (flattened) module inputs
	- Input size can grow exponentially as model layers accumulate
	- VGG11 first gate layer over 8k inputs
		- Computational overhead, missed efficiency opportunity
		- Poor decision generalization
- Re-architect exit gate structure
	- Efficiently and uniformly collapse inputs into smaller size
	- Before gate linear layer
		- Avg. Pool / Max Pool
			- Marginalize across channels
			- Perform binning within each channel
			- Combine both
		- Dropout
			- Randomly accept/reject inputs

Parallel Computing Optimization (Coming Soon)

- Early exits operate at batch level
	- Some samples may exit, some continue forward
- Branch formed in computation graph
	- Divergent branches can be computed in parallel
- Implementation considerations
	- Pytorch natively allows for distributed load over multiple GPUs (Cuda)
		- Sequential processing on single GPU
	- Delegating Cuda tasks over Python threads (GIL) causes system errors
		- Tensors do not serialize/deserialize across threads

